
ES€ARCH CORP SANTA BARBARA C
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

END
~A1E

FlLME ~
2 —79 I

S



1.0 ~~~
______ 

L~ O~I22

I. ’ ~g

11111’ ~25 IIIII~ IIIII~
MICROCOPY RESOLUTION TEST CI-IART



—~~ ~~~~~~~~~~~~~
-

I
~~~~ 

~~~~~~
. f h  

-
: 227

I L~ ~?1JsIflg Asui isrtion . L~~~C~ Ada,5~iv&4~iting of~~oftwa r.~~~
_____ . -J- - --—~~~- -~ -

I 0

D’~D’~C~
_ _ _ _  _ _  

E?fF3rPnnhlf?

I
~~~~~~~

J G E N E R A L I~~RESEAR CH II CORPOItATION
4~~~~ I t A SUBSIDIARY OF FLOW ORNERAL INC.

P.O. Box 6770, Swit. B rb.ra, Ceftfomia 93111

I
1 79 11~ 27

—~— - ~——~~~~~~~~~ ~~~~~~~~~~~~~~ - & ~~ t&s

r ~ -

-

‘

-

-‘a :1

Thi, paper was presented at the International
Federation of Informat ion Processing Society
Working Conference, S.pt..ber 26—29 , 1979,
London, England .

Research reported In this docuasnt vas sponsored
by the Air Force Off id of Scientific Research
under Contrsct 749620-79-C—O113.

I

~~~~~~~~~~~~~~~~~~~~~~ l~ . - -- . -~~& ~~~ ~~~~~~~~~~~~~~~~~~~ S k _  ~~~~~~~~~~~~~~



~~~~~~~ 7~T’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

- -

- — - - - — . — ___.__** ~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - - - ,
~ 

—

I -

.

r

~

- 

~:

1. Research sponsored by the Air Force Office of Scientific
- 

Research (APSC), United States Air Force, under Contract
F49620—79—C—0fl5. The United States Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright

;- notation hereon.

I ~
~~

- is
1~

1~

- ~~~~RC~ ~~~~- ---- D ~~ ~‘- z LJ ~-- ~ be~~
~~~

-

u;~i~~~:~
se I ,~~~~~~~’d az~d 1 ~

II -

- - . . - 7 _ 1____
£~ Orm~~tj 0~ 0

~~1Cep

N
V L. 1. ’
L -

~

_

~

__ __ __.

~

___ . *_

~

____ S
— ——- — ~~~~~~~~~~~~~~~~~~~~~~~ ~~

. —

__ ‘___ — —-zr~~~~~-~~~~~~-
w~ ~-~--~-- -~~~~~ ~—~-—- —-

p.-- - __
— ____________ -*-r - -S — - —-~~ - - -- - --- -~~- - -5—-----— -- —-5----- _5-.__ - - —

I
USING ASSERTIONS

r ~~

- FOR ADAPTIVE TESTING OF SOFTWARE

Dorothy N. Andrewa
General Research Corporation

P.O. Box 6770
- Santa Barbara, California 93111

8O5—96~I—772~ê ext. 336

~
I T

ABSTRACT —

- -
- - - (

~e of the ways of assuring greater rel iability of software is to
ii t - I
—

~
.. improve testing techniques . Three of the key problems associated with
- - software testing are: choosing adequate test cases, assuring

oorrectneaa of the results, and reducing the h~~h cost of testing. Some

~ p
-

degree of automation is required to help solve these problems. By
ocmbining the capability of adaptive testing with the use of executable
assertions, it is possible to automatically execute a program with i

- large number of testoases over a wide range of input values. The

-

- - usual goal of adaptive testing La to maximize some performance value
-• (objective function) far the software by automated perturbation of the

input parameters in such a way as to degrade the system performance to a

-- specified limit . Th15 technique only indirectly leads to locating
errors , because of the time-consuming task of examining th. usual output
from the program. In software testing, the primary goal is to locate
the maximum number of errors rather than maximize the performance value .
Sine, software errors oan be detected by executable assertions , these
assertions can be used to define an objective function fbr the adaptive
tester so that a program can be tested automatically and a sapping made
of its “error space .” A search algorithm is used to generate new test

ii oases based on past performance data about the number of assertion
violations . Softwar e testing can become muc h more efficient andI effective through the use of adaptive testing with assertions , because

— such extensive testing increases the possibility of find ing any existing

I errors and of improving software reliability .

1 page l

——-~ —--- —- -- ----- -~~~- —-~~~~~~~~~~~
--- -

~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



- 
--

~~ - W  

- 
- --

— —,--—‘_—___-_ -_ _-__ -_ — __ -_--. -_-~~~~_~~~~~~~~~~~ 5- * * * a ‘~~~~ % ____.. .. -

~~i I

INTRODUCTION
Testing is one area of the software development cycle %there there

is a need for vast improvement. It is frequently the most costly par t
of the cycle and the most time—consuming . What is needed is not to put

t sore money and time into testing, but to devise a systematic method of

- 

exercising a program with a sufficient number of input val ues over the
entire range of possible values in such a way that any existing errors —

~ 
4.

are discovered • To accomplish this goal and to automate as much of the
testing process as possible , the techniques developed for adaptive

- 
- . testing are being combined with the use of executable assertions for

- 
-- error detection .

-

.5 1
- Before software testing can be automated (and become cost

effective), two primary problems must be solved: developing adequate

- test oases to identify errors, and verifying the results of these test
- - 

cases • The problem of developing test cases has been studied in the

- 
Adaptive Verification and Val idation research program . 1 The method has

~
- been to use various search techniques adapted from optimization theory

and artificial Intelligence research in order to maximize a performance
— value (objective funct ion for the software) . The original test cases

(input val ues) are either supplied by the tester or developed
stochastically. These val ues are then altered , through a feedback

~ mechanism using heuristics, to maximize the performance value.

In software testing, however , wa are not so much interested in
max imizing performance as in locating errors. The technique of
maximizing a per formance function only indirectly helps to locate errors
in the software . Errors are usually discovered by examining the output

r of a program , which is a time—consuming task. Since software errors can
1. be detected through the use of assertions, assertions can be used as the

objective function , thus allowing the adaptive testi ng techniques to be
applied to the problem of testing software .

I
I ~~~

__
~~~~~


It i .

-
~

- ADAPTIVE TESTING
Adaptive testing is a technique fbr identi fying how well a program

performs in response to changes in its input values. The Adaptiv e
Tester was developed to test the response of simulated ballistic missile

- defense programs to changes in a threat scenario. The program’s
-

performance was defined by the number of re-entry vehicles which were

j not intercepted .

Ij The Adaptive Tester uses the principles of feedback and adaptive

-

- search to identify scenarios which result in the maximum tolerable
number of re-entry vehicles penetrating the defense • An initial

- scenario is described and input to the test case construction algorithm .
This algorithm generates a set of input values for the program being
tested . The program is executed and values are recorded which measure
its performance. The performance values are then evaluated and compared
with past performance values. The change in performance values is then

Li used as input to the adaptive search algorithm which constructs a new
scenario. New input data is constructed for this scenario and the

4 program is run again. This cycle continues until scenarios are found
- which cause the maximum tolerable number of re-entry vehicles to

penetrate the defense • The input values which characterize each such

- -
scenario, and the resulting performance values , define the “performance
boundary” of the program. -

I] ~~ThODOLOG! FOR ADAPTIVE TESTING WITH ASSERTIONS
In much the same way as the input parameters are systematically

perturbed to degrade the system performance until the performance
boundary is reached , the input parameters of a program can be perturbed

• until areas with max imum errors (indicated by assertion violations) are
located . The first step , therefore , is to add assertions to the code to
be tested, if that has not already been done. Actually assertions have

II man y uses and are extremely val iable throughout the entire software
cycle. Ideally they should be written during the design phase to state

II
I__~ ~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_
~~~~~ e

_
~~~

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


I ;
specifications about the variables before any coding takes place .
Later , during dynamic tests , these same assertions can be mad e
executable to help in program debugging. Assertions can also be left in

- - the oode as a form of documentation, because they can contain much
useful information about variables Ce .g., the expected range of values
or , in distributed systems, path or timing constraints). These built— in
specifications are a way of protecting the software during deployment or

- maintenance from modifications to the code which may alter the expected
mode of operations .

Almost any condition or specification can be expressed using
- executable assertions. An executable assertion is a logical expression

which , if evaluated to fal se , signals the violation of a specification

[J f or the program. The logical operators of the assertions have been
extended to include the operators of first—order predicate calculus:

[j implication , existence, and universal quantifiers. A preprocessor
translates the assertions into executable statements • When the program

- - is executed , the logical expression in each assertion is evaluated . It

‘
~~

- - it is fal se , an error message is printed which states the name of the
- - module and the line number of the assertion statement . In addition , a

tabulation is made of how many times an assertion is violated .

1) — -
-

The important role of the assertions in this type of testing
cannot be emphasized enough: they should be interspersed throuahout the
code at appropriate places2 , there must be a sufficient number of
assertions to monitor each variable , and they must correctly state the

p rforu ance requirements of the variables • In other words , the success
of this type of testing depends on the validity and comprehensiveness of

~
I:

the assertions.

To assure the correctness of the assertions , the second step is to

II perform prel iminary tests of the pr ogram with var ied input values. A

I
I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _— - - -~ ---——---- - - ~~~~~1~~~- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-~~ ~~-~~~~ - - ~~~~~~ ---~~~~ -~~~~~~~~~ v -~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .S - - ‘s.-.

I

frequent result of this initial, testing is that unsuspected errors in
the code are uncovered by the assertions. Any errors in the code or the
assertions should be corrected before continuing.

-

~.
The third step is to construct a set of teat data by specifying

the possible range of values for the input variables • The initial value
- of a variable is the minimum boundary value and the upper limit (and

-

final value) is the max imum specified value . Next some interval is
- chosen through which the value of the variable will be stepped during

- . the testing. In this way, a “grid” of input values is defined over the
- - input space. Figure 1 shows the input space boundaries for a program

- which was used as part of an experiment to determine if it was feasible
to merge the adaptive testing methods with the use of executable

I assertions for this type of testing. The input values of the transit

4 times were within the range of 0 to 300 microseconds. The probability
of any one pulse request in the sequence of requests being a search
pulse was allowed to range between 0 and 1.

1- -

- NJJS(R OF ASSERTIONS VIOLATED

-~ 1’
PmPOPT I ON OF SEARCH PLLSE S

IT
Ii

FIgure 1. Input Space Boundary

I
I page 5

5-- — --—-
~ ~~--~~~~~~~~~~~~~~~~ “-.- -- - ~~~~~--—~~--‘—~

--
~~~~~~~~~~ -- -- - -

~~ —-~~~~~~ --- ~~~--- ~~~
— ------- —

~~
- -- ---



_____ — — . —---—-— ~~~~~~~~~ ~~~~~~~~ - .--.~~~~ -~~--.--- ‘ ‘~~~,r ~~~~~~~~~~~~~~~~~~~ 
—‘- ___ -?

- 5—- - - - - --- - - — .
HI

Once the range of input values is specified and the interval
chosen , the rest of the testi ng is automated • The tester is relieved
not only of the chore of choosing new input data but also of the tedious
task of wading through reams of output to verify the results of each

- test case . i~aring the fourth step , the program is executed once for
- 

- • each set of input values and a mapping is made of the error space . The
input variables of the program are defined as the independent variables ,
and the number of assertions which become false when the program is run

- 
with a particular set of input values is defined as the dependent
variable. Val ues of the dependent variable define an objective function
of errors over the input space. By maximizing this objective function ,

I we can locate the values of the input variables which cause the program
to fail .

- -

• Hav ing defined the error function in much the same way as the
: - performance function is defined for the Adaptive Tester , the fifth step

then is to use the search algorithms of the Adaptive Tester to locate -:

- - val ues in the program’s input variables which cause the most errors to
occur . The reason we search for the area of maximum assertion
violations is to uncover as many errors as possible . Although some

- - errors will cause several assertions to be violated , other errors are
- .  only indicated by a single assertion failure ; therefore , it is essential

- that the entire input space be searched f or all possible violations.

Figure 2 shows the organization of the adaptive testing programs.
1 1 A test case construction algorithm takes the initial test data and

- - 
contructs a set of input values with which to run the program. These
input data values are also recorded in the test results file for use by

• 
- 

the search algorithm in alteri ng the input data . The program is run and

I [j the assertion evaluator evaluates the assertions as they are executed
and records any assertions that become false . The test resul ts file is 

_ _



—-

- 
~~~~~~~~~~~~~~~~ ~

—
—

then read by the search algorithm , which computes new values for the

I input variables based upon the assertions violated and the past history
of the teats . These new values are input to the test case construct ion
algorithm , which form s a new set of input values for the program andI executes it.

L I BASIC ~~~~~ Fii~T CASE I I ~I TEST ‘— CONSTRUCTION I ~~~
- TEST PROGRAI I I ~

• ~~
- [DATA ALGORITHM [

-~~~~ i ~
1 _~_

C ________ _________ _________ ________

I ~~~~~~~~~~~~~ J ~ RESULTS
~~~ ~~~~~~~~~~~~~ I

Figure 2. Soft ware for Adapti ve Testing Using Assertions

EXPERIENCE WITH ADAPTIVE TESTING USI NG AESRRTIONS
The process tha t generates a raiar schedule in a missile defense

simulation was chosen as the test object for a preliminary evaluation of

Ii this method of testing soft ware .3 This set of mod ules take a sequence
U of requests for radar pul ses and from these constructs a schedule for

the radar’s time. This schedule must not overlap transmitt ed pulses
Ii with each other or with listening times (“receive windows”) and must

allow sufficient time between pulses and receive windo ws to switch beam
fj  positions .

is.

I page 7
- - - - •~~~~ -



‘~~~~~~~~~~ ----
~~~~~~ 

—, • —.——--‘---s ~~__~_55~~*~~ •5~~~~~

In order to show the error space more clearly, two of the input
variables were chosen as independent variables in the experiment : the
transit time for pulses (i .e., the time between the transmission of the
pulse and the receive window), and the number of search pulses in the
input sequence . Random input val ues were generated to simulate a
real—time process . The number of assertion violations for each set of
input val ues was tab ulated during the testing for use in constructing a

•
three— dimensional grid .

~ 11
This purpose of this preliminary experiment was to determine what

the error space of a program looked like and whether it was feasible to
!. to use adaptive search techniques to maximize an error function . The

results of this experiment showed that the “error surface” from testing
this set of mod ules was well behaved . It contained maximums, minimums,
and gradients which could be used by various search techniques to locate

-

- the values in the input space which cause the moat errors . Figure 3
shows the results from testing this program with the set of input values
previously illustrated in Figure 1.

ASSERTIO N VIOLATIO N S

III.

Nt1~BER OF

I SEARCH
PULSES

—
- Figure 3. Example of an Error Space l’~p

I -

page 8
p —— —5 — —--5— ——- - —5,-— .•___ — --5 t_________ —

5, — •• •~~-~- --,~-~-s- -- ~~~~~~~~~~~ ~~~~5, —Sr-- ~~~~~~~~~~
-

-

A second experiment on a much larger scale is now in progress . A
complex software program which computes orbital element vectors was
selected as the test obj ect. Assertions were added , and a set of errors
for “ seed ing” the program were generated using methods developed by
current research 4 . The errors are representative of those found in
large programs in both type and frequency of occurrence5 , and the sites
chosen for the seeding were randomly selected .

The input variables to the program are considered two at a time to
construct a three—dimensional error space. Two factors should be
considered in decid ing which variables to perturb : it is most effective
to choose those variables which have the most influenc e on the final
output values , and those which provide collateral testing by exercising
other input variables that are dependent on them .

From the error functions derived fr an each two—variable case , a
complete error map will be constructed for the program . The error space
map will give a good indication of the shape and characteristics of the
error function of the program . The shape of the error function will
determine which search algorithms are most applicable to locating the
input val ues of the program which lead to the most errors . The
per formance of the search algorithm chosen for the experiment will be
eval uated .

CONC LUSION
The final results of the current experiment will provide a second

eval uation of the effectiveness of using executable assertions for
soft ware testing . In addition , the performance of the adaptive search
technique in locating the maximum value of the error function will

- -
indicate how much automation is possible in the testing of computer
programs .

- a.

- E
r page 9

- - -~ - ----- —-— -—5,--------5—--- ~5, —5,-s

___ ___
-— - -

Another benefit of this project is a further merging of the
testing process with the requirements of fault tolerance in software.

Once an assertion indicates the presence of an error , one of two choices
Is possible: either uncover the error and correct the code , or leave the
error in and provide a method to recover from it. Al though such a
suggestion at first sounds Incomprehensible , there are times when an
error cannot be found or , if found , is so complex that it cannot be
corrected easily without the possibility of Introducing more errors .
Such might be the case in an algorithm that is basicall y correct but ,
within certain ranges , produces incorrect results. If these ranges are
not expected to occur often , then the best solution may oe to provide
compensatory code in a recovery block.

A second related outcome of adaptive testing with assertions is
that the tabulation of assertion violations indicates which assertions
are potentially the most sensitive to errors and are, therefore , the
most valuable . This information makes it possible to optimize assertion
coverage in fault tolerant applications requiring minimal overhead .

ACKNOWLEDGEMENT

This research has been supported by the Air Force Office of
Scientific Research Contract No. F49620—79—C—0115, Dr. J. P. Benson ,
principal Investigator .

— REFERENCES

1. D. W. Cooper , “Adaptive Testing ,” Second Intern at ional Con ference on Software Engins.rin g,13—15 Octobe r 1976 . San Francisco , CA.
2. D. N. Andrew. , “Softwa re Fau lt Tolerance Throu gh Executable Assertions ,” Twelfth AnnualAetlomar Conference on Circuit.. Syete... and Co~~,ute r s, 6—8 November 1978 . Pacific Grove , CA.

- L C. Cannon , R. Mac eon , N. Rrooka , “An Experimental Eva lua tion of Softwa re Testin g ,” Fi nal Report ,—
- General Research Corpo ration CR —l— 854 , Nay 1979.

4. J . lenson , S. Saib , “A Software Quali ty Assurance Experimen t , ” Soft ware Quality Aaeuran ceWorkshop, 15—16 November 1978 , San Diego, CA.
5. T. A. mayer , et al . , Softwar e Reliab ility Study, TRW Defense and Space Systems Group

RADC— TR—76— 238 , Redo ndo leach , CA , AuguSt 1976.

- -

page lO

-— —

--

~

--— ~~~~~~~~~~~~—-—---~~-
. -~~~-- -~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

__________ --5,- ~~~~~~ ~~~~~~~~~ -
~~~~~~~~~~~~~~ ~~~~~ I

SECU rn TV ~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~nter.~~ 

- 

-

- 
. REPORT DOCUMENTATION ~AGE BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT’S CATALOG NUMBER
-; A OSR.~~~~~9- 114~1~ _ _ _ _ _ _ _ _ _ _ _ _

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

USING ASSERTIONS FOR ADAPTIVE TESTING OF Interim
SOFTWARE ‘- PERFOP1MINGARG. REPORT NUMBER

___________________________________ TM 2270/
7. AUI’NOR(.) S. CONTRACT OR GRANT NUMBER(s)

— D.M. Andr’ews Ic.
~—F4962O—79—C—0l15

S. PERFORMING O R G A N I Z A T I O N  NAME AND AD
~~~

ESS 10. PROGRAM ELEMENT. PROJECT. TASK

General Research Corporation
P.O. Box 6770

- 61102F 2304/A2Santa Barbara , CA 93111 ____________________________
II. CONTROL LING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NM September 1979
Boili ng AFB, Washington , DC 20332 13. NUM B EROF PAOES

__
13

14. MONITORING AGENCY NAME & ADORESS(If di f ferent from Controfllng Office) IS. SECURITY CLASS. (of thi, report)

-
UNCLASSIFIED

ISa. DEC LASSIF ICAT ION/OO W NGRAO ING
SCHEDULE

IS. DISTRIB UTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

IT. DISTRIB UTION STATEMENT (of the eb.tracg entered it~ Block 20, if different from Report)

Approved for public releatne ; distribution unlimited.

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Contlnu. on reverse side If neee.sal, ’ and identify by block numb.,)

20. A B S T R A C T (Continue on re~~ri. lid. if necele.ry .nd Identify by block numb•r)

~‘.One of th~~way~ of assuring greater reliability of software Is to improve
testing techniques. Three of the key problems associated with software testing
are: choosing adequate test cases, assuring correctness of results, and reducin~the high cost of testing,) Some degree of automation is required to 1help solve I ese
problems. ~.By combining the capability of adaptive testing with the use ofexecutable assertions, it is possible

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ a
large number of tes~~ases over a wide range of input values. The usual goal
of adaptive testing is to maximize some performance value (objective function)-~

FORM -
~~DD 1 JAN 73 1473 UNCLASSIFIED ~~L~~’A

~~~~~~~~~~~~~~~~~~~~~~~ 
. - SECURITY CLASSIFICATION OF THIS PAGE (When D.ta Entered)

~s
- - - .__._s.__- _s-_-5~~~—s__.___ ..5..—s .—-— ‘~~

~~~~~~~~~~~~~~~~~~ ‘ ~~~~~~~~~~~~ -— -



_ _ _ _  
‘w —’~~~ ~~~~ - ~~~~~~~~~~~~~~~ ~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TT
-

-

20. ~~stract continued. ~~~~~.
-

-
a

.

. .-

/~~~~I ~~~~

~~ ‘for the software by automated perturbation of the input parameters~-In such
a way as to degrade the system performance to a specified limit(1~hi8technique only indirectly leads to locating errors~~beca*.~se of ~~ time-.
consuming task of examining the usual output from the prograih > In softwar
testing, the primary goal Is to locate the maximum number of errors, rather
than maximize the performance value. SInce software errors è~~~~ ’~~detected by executable assertions, these assertions can be used to define
an objective function for the adaptive tester so that a program can be tea- ~dautomatically and a mapping made of its terror space.’1 A s~jf4ch algorithmis used to generate new test cases based on past performance data about
the number of assertion violations. Software testing can become much more
efficient and effective through Ithe-~ iè of adaptive testing with assertioni
because such extensive testing increases the possibility of finding any
existing errors and of’ improving software reliability.

+

L
‘INCLASSIFIEO

-
SECURI1”V CLASSIFICATION OF THIS PAGE(When Sm. ints, d)

~~~~~~~~~
. 

- 

- ________


